
4.2 Design Exploration
4.2.1 Design Decisions

ESP32 C6:
The ESP32 has built-in Wi-Fi capabilities, low power consumption, and energy
efficiency. All these functions are critical for our project since we will deploy the
pole in the cornfield, and batteries will supply it. The connection between the
nodes will be relatively stable, allowing us to transmit and receive the resistance
data. ESP32 C6 supports a higher standard Wi-Fi with a stable connection and
faster speed. This will be suitable to our case due to the high counts of ESP32
we placed in the field, this will not interfere with other nodes. ESP32 has a built-in
security feature which is WPA3, enhancing the network's data protection.
Besides, using ESP32 to build out wireless mesh networks can be easily scaled
to different ranges, and it can cover more area by adding the pole in the field.

Placement of Interdigitated Electrode(IDE):
We will place the sensor on three different levels, each of which has three
sensors. This allows us to get a more comprehensive analysis of the pesticide
spray distribution. The sensor at different heights will capture different data
during the spray. The sensor's placement is critical because the data we get will
affect the spray techniques.

Base Station:
We will use an additional ESP32 C6 as our base station to store the data from
multiple sensor nodes. A central node will allow us to manage and analyze data
from the whole mesh network. The ESP32 has the capability to store the data
from 6-12 nodes from the mesh network in a .txt file. The ESP32 has an built-in
long range wi-fi protocol which will make it far easier to transmit data between
nodes and the base station.

Wheatstone Bridge:
The Wheatstone bridge design in our circuit aims to get a precise resistance
voltage from the IDEs. Due to our needed accuracy resistance measurement, a
Wheatstone bridge will be better than a normal voltage divider. Wheatstone
bridge circuit is more sensitive to small value changes; in our case, the sensor
will measure different resistances ranging between 100k to 200k ohms. The
ratio-based circuit will reduce the error created by the supply voltage fluctuations.
We selected an op-amp with low noise and high input impedance, LMC660,
which allowed us to output the range between 0.1V to 1.0V.

4.2.2 Ideation

Raspberry Pi
● Built-in Wi-Fi
● Locally stored/

external storage
● Access remotely
● Low power

consumption

Arduino
● Low power

consumption
● Support basic data

storage
● Lack of real-time

processing

Industrial Standard
● Might require

specific soft for
data access

● High cost
● High reliability
● Weather proves

ESP32-C6
● Limited data

storage
● Low cost
● Low power

consumption

Data Collection For
Wireless Mesh

Network

Cloud-Based
● Real-time data

collection
● High cost
● Depends on

cellular coverage

Laptop with Data
Software

● Large data storage
● High power

consumption
● Less durable
● Complex data

analysis

Custom Build(SD
Card)

● Low power
consumption

● Customizability
● Limited Capability
● Data management

challenge

Lo-Ra
● Long-range data

collection
● Low power

consumption
● Depends on the

range

4.2.3 Decision-Making and Trade-Off
During our decision-making, we focus on five aspects based on the project
requirements:

Criteria Weightage

Data Storage Capacity 20%

Power Efficiency 15%

Real-time Data Processing 25%

Measurement Accuracy 20%

Cost 20%

Data Storage Capacity
Based on these criteria, we have chosen the ESP32-C6 as our central device for
the data collection in our mesh network system. The ESP32-C6 has built-in flash
memory, which is enough for moderate data logging. Pairing this with external
storage such as an SD card enhances its capacity for larger data sets, especially
for long-term data collection. In our case, we need our system to collect data for
3 hours. This decision allows us to ensure this happening.

Power Efficiency
The ESP32-C6 is designed for low-power applications. It supports various
power-saving modes, making it an energy efficient choice. This microcontroller is
especially useful in remote installations, where battery life is crucial. This also
reinforced our decision.

Real-time Data Processing
With a relatively high processing power and Wi-Fi 6 capability, this
microcontroller is suited for low-latency data processing applications. The Wi-Fi
feature allows faster data rates and reduced latency, which is essential for
real-time processing in a distributed network.

Measurement Accuracy
Accuracy largely depends on our sensors provided by Claussen Labs. However,
the ESP32-C6’s reliable 12-bit ADC (analog to digital converter) and other input
interfaces support accurate sensor data capture, making it a solid choice for
environmental sensing applications such as pesticide spray monitoring.

Cost
The ESP32-C6 is known for its affordability compared to other microcontrollers
with similar capabilities. Priced at nine dollars, it allows for scaling of our project
to cover multiple nodes without exceeding budget constraints.

4.3 Proposed Design
4.3.1 Overview

Our design will collect and conglomerate pesticide data. Essentially, we will
scatter sensors throughout a corn field at different crop canopy levels that record
pesticide saturation at that point. Each sensor will have a microcontroller to which
it will feed data. In basic terms, the microcontroller acts as a digital log to collect
the sensor measurements. Data can then be sent between these microcontrollers
and eventually to a central node (see Figure 1). The central node acts as a base
station where all sensor data ends up. It allows researchers to remotely pull all

pesticide saturation data from one station. The measurements will be organized
into a user-friendly text file.

Figure 1: Simplified overview of the communication system

4.3.2 Detailed Design and Visual(s)
The goal of our project is to develop a wireless mesh network that assists in the
monitoring and mapping of pesticide spray. Using interdigitated electrodes (or
IDEs) developed by Claussens Labs, we can collect resistance values at different
levels of the crop canopy. These values will correlate to the pesticide saturation
at that level of the post.

Each post will have nine different sensors (IDEs) connected to three different
microcontrollers or nodes. Acting as a gate between the sensors and
microcontrollers will be a PCB. The PCB is known as a Wheatstone bridge
circuit. We have designed it to take in a resistance value and convert it to a
corresponding voltage. It is an imperative step since the microcontroller takes in
data via voltages rather than resistance values. It does this via its built-in ADC
(analog-to-digital converter). The digital voltage values will be converted back
into resistance measurements through programming. Next the output will be
written to a physical SD card in addition to being transmitted (see Figure 2)

.
Figure 2: Block diagram of sensor data path

The microcontrollers will transmit the data between nodes (i.e. other
microcontrollers scattered throughout the field) and to the base station by a mesh
network. A mesh network is useful as it allows data to be transmitted between
poles, reducing the need for all microcontrollers to be within the base station's
connectivity range. We will utilize the built-in long-range wifi on the ESP32
microcontroller to conglomerate the data at the central node into a user-friendly
text document that researchers can pull and analyze. Researchers will thus be
able to gather data remotely and automatically, reducing time in the field and
increasing productivity.

Our project will propel Claussen Labs forward in their expedition to determine
which pesticide distribution methods are most efficient. With an ever-growing
world population, determining the best means of pesticide application is
necessary for creating dependable and high-yield food sources.

4.3.3 Functionality
In this design, researchers or farmers can efficiently monitor pesticide distribution
across a crop field. To begin, the user places sensor-equipped poles in different
field areas, each with ESP32 microcontrollers that form part of a mesh network.
After powering on the devices, the user goes to a central node—accessible via a
laptop with an SSH connection over Wi-Fi—and sends a wake signal that
activates all sensor nodes. The central node displays the status of each node,
ensuring they are ready for data collection.

As the user applies pesticides, each sensor node records data on pesticide levels
at various canopy heights. The user can monitor network health and confirm that
all sensors are operational via terminal commands on their laptop. When the
application is complete, the user returns to the central node, issues a command
to stop data recording, consolidate data at the central node, and put all nodes
into sleep mode to conserve power.

Next, the user retrieves the data by downloading a .txt file from the central node,
which contains all recorded readings for analysis. Additional terminal commands
allow the user to monitor network status and troubleshoot as needed, providing
feedback on each node's connectivity. Overall, this design streamlines field
monitoring, allowing the user to control the mesh network and data collection
from a single interface, reducing manual handling of each sensor and making the
system easy and efficient for field operations.

Timeline

Step Action System Response User Benefit

1 Pole Setup Nodes initialized in
sleep mode

System conserves
energy until needed

2 Wake-Up Signal Nodes activated and
confirm presence

User confirms all
nodes are active

3 Pesticide Application Nodes continuously
collect data

Insights into pesticide
application over time

4 Application Completion Nodes sleep; data
compiled to .txt file

Full record of
pesticide distribution

5 Data Retrieval User obtains .txt file
for analysis

Enables post-analysis
and optimization

Table 1: Timeline of system use/functionality

4.3.4 Areas of Concern and Development
In this design, several key concerns need to be addressed to ensure it meets
user requirements effectively in a real-world agricultural setting. One primary
challenge is crop height interfering with network connectivity. Dense or tall crops
may block signals between sensor nodes, potentially leading to data gaps in the
mesh network. To counter this, we’ll experiment with network topologies and
node placements, and possibly strengthen signals with additional hardware.
Another concern is data accuracy, as environmental conditions like humidity or
interference from other devices can distort sensor readings. Developing

calibration protocols that account for these factors will be essential, and
cross-verifying data with multiple sensors may help filter out inaccuracies.

Sensor calibration itself is a crucial factor, as inconsistencies among nodes could
lead to unreliable measurements. Regular calibration, potentially with an
automated feature at startup, will help maintain uniformity in data collection
across the field. Additionally, power management is a challenge due to the
energy needs of the distributed sensor nodes. By implementing low-power sleep
modes, optimizing data collection intervals, and facilitating rechargeability, we
aim to ensure battery life without compromising data coverage. Scalability also
presents a challenge as field sizes and monitoring needs increase. Larger
networks might require more sophisticated data routing and adaptive node
configurations to handle increased loads without compromising performance.

Overall, the current design largely meets user needs by providing a flexible,
SSH-based interface that allows users to control data collection and monitor
network status centrally. However, ensuring consistent performance across
various field conditions and scaling the system for larger fields remain concerns.
To address these, we plan to conduct testing to evaluate connectivity, implement
sensor calibration protocols, test energy efficiency features, and simulate larger
network topologies.

For further development, we’ll seek client and advisor feedback on acceptable
data accuracy and frequency requirements to help us fine-tune data collection
protocols. Additionally, they can provide insights on power management with
ESP32 microcontrollers in remote setups, and guidance on calibration techniques
for environmental variability, which will be invaluable in refining our approach to
better meet user expectations and real-world conditions.

4.4 Technology Considerations
For our project we are using both internal and external technologies. Both forms of technology
will still be used together and are ultimately going to be connected together one way or another.
First, the ESP32 C6 microcontroller, as explained before in our design decisions the ESP32 C6
has various strengths such as: built-in Wi-Fi capabilities, low power consumption, and energy
efficiency. Next, our circuit design includes a wheatstone bridge which allows us to precisely
measure the resistance of an unknown resistance, which in our case will be coming from our
pesticide sensor. Although the Wheatstone bridge is more sensitive to voltages compared to a
simple voltage divider it also allows for more accurate resistance measurements, which is
exactly what we need for our project. Finally, the pesticide sensor which has been provided to
us by Claussen Labs and is a part of our wheatstone bridge. When the time comes to spray
pesticide on the crops, this sensor will be doused by a certain amount of pesticide depending on

the location of the sensor. The amount of pesticide on our sensor will give us a certain
resistance measurement which will be stored in an ESP32 C6.

When it comes to technology available that has similar functions to our project, there is a good
amount of products to look into. First, the Libelium, which allows the monitoring of multiple
environmental parameters involving a wide range of applications, from plant growing analysis to
weather observation. The strengths of this technology are; it supports 30 different sensors
covering critical environmental parameters such as soil moisture (can also do temperature,
humidity, solar radiation, wind speed, rainfall), easy to deploy, functional wireless mesh network,
and energy efficient. The weaknesses of the Libelium are; high cost ($5,000 - $20,000) for the
whole system, complex maintenance, connectivity issues in remote areas, and low data
security. Another technology that is available is the iMETOS, which has the strengths of
real-time data access from the platform, alerts for critical weather events, durable to harsh
weather, and integration with other sensors. The weaknesses of this technology are Doesn’t
directly monitor pesticide spray, poor connection in some areas, high initial cost ($1,500 -
$3,000), and a complex setup.

For our project, we looked at these available technologies and found possible solutions and
designs that could be implemented into our own project. Including the solutions and resources
provided to us by our client, we were able to narrow down and start designing our own circuits
and mesh networks. For our circuit, that will be connected to the sensors and microcontroller,
we initially started with a simple voltage divider. This worked but had to have such a high
resistance that ultimately caused a lot of room for unexpected error. We then found the solution
of the wheatstone bridge, which can be seen in Figure 3. This new circuit allowed us to lower
the resistances and lower the room for error, it did not erase it but it allowed us to be able to
control it easier. Additionally, the new feature of the wheatstone bridge resulted in more accurate
voltages and it also made it easier to find certain voltages due to being able to easily change
resistance values on either side of the bridge.

4.5 Design Analysis

Figure 3: Circuit Design

On the hardware side of our project we have built a circuit shown in Figure 3. The circuit will be
implemented with the pesticide sensors provided to us by Claussen Lab. The circuit consists of
two big parts, the Wheatstone bridge and a Differential Amplifier. The Wheatstone bridge is the
left side of the circuit diagram and its function is to measure an unknown resistance, in our case
it would be our sensor, by balancing two branches of a bridge circuit. This bridge allows us to
get accurate voltage readings to then send through the differential amplifier. The differential
amplifier, which is the right side of our circuit diagram, takes two input voltages and outputs the
difference between the two. After the differential amplifier, its output will be sent to the ESP32
microcontroller, specifically the ADC of the microcontroller, where the voltage will be converted
to the resistance value of our sensor.

When we are not able to get on campus to use the voltage sources and other instruments to
test our circuits, we simulate them on LTSpice. From our experience both forms of testing work
well and even give us very similar results. Currently we are working on redesigning the circuit
due to some unexpected errors occurring. Through LTSpice, we ran a worst case scenario on
the resistor components which led to an output voltage that was out of our range, to fix this we
are currently working on reducing resistor values as well as changing our reference voltage to
give us a bit of room for slight error that is out of our control.

For the future we are planning on adding a power source and voltage regulators. This will allow
us to power our circuit with batteries and regulate the voltage that is coming from the batteries
and entering our circuit in order to consistently have an input of 5 volts. Additionally we plan on
adding diodes after our differential amplifier to prevent too much voltage or too little voltage to
enter the ADC of the microcontroller.

Figure 4: Mesh Network Design

For the networking side of our project, which will be used to transfer sensor data to a central
node, we have successfully set up a mesh network framework created by Espressif. It works by
programming a single ESP32 (the base station) as an access point. It is to this ESP32 that all
the rest will form a network in order to connect to. The rest are flashed as mesh nodes. They are
given the SSID and password for the access point. Upon being turned on they search for both
the access point and other mesh nodes. The nodes automatically organize themselves into a
network where any ESP32 can send a wifi packet to any other ESP32 in the network.
Theoretically, the network is self-healing meaning that if a node were to be disconnected, the
remaining nodes would reorganize in order to reconnect any other nodes that were connected
to the disconnected node.

This current implementation is functional, however there are several areas to be improved.
Firstly, the whole network uses conventional 802.11 wifi. In order to meet the requirements of
our project we will likely need to use 802.15.4, a special long-range wifi protocol developed by
Espressif. Another area that could be improved is that by default only one node connects to the
access point (base station). This means that all traffic will need to be routed through one board
which could prove to be an issue with the 802.15.4 protocol’s low bandwidth of ~250kbps. It
would be beneficial if multiple nodes could be connected to the access point so as to avoid
bottlenecks in the network.

