EE/CprE/SE 491 WEEKLY REPORT 4

10/4/2024 - 10/10/2024

Group number: sdmay25-04

Project title: Wireless Mesh Network for Pesticide Spray Monitoring and Mapping

Client: Claussen Lab- Iowa State University

Advisor: Nathan Niehart

Team Members/Role:

Ashley Falcon: IDEs and Microcontrollers, Group Communicator Drew Scheidler: Mesh Networking; Note Taker Hector Perez Prieto: Microcontroller and IDEs Henry Hingst: Mesh Networking; Group Leader Yok Quan Ong: Circuit Design, IDE Wesley Smith: Circuit Design; Microcontrollers; Note Taker

o Weekly Summary

- This week, we continued plowing ahead in our project
- We each completed our assigned tasks from the week prior
 - Found more documentation for the user manual and hardware abstraction layers
 - Looked into the functionality of the microcontroller, including built-in functions, registers, and physical hardware (i.e. ADC)
 - Dissected the schematic created by the client and concluded that it needed to be completely reworked
 - Researched different Raspberry Pi's
 - Documented different communication protocols in terms of range, specs, and feasibility
 - Wifi
 - LoRa
 - Bluetooth
 - Zigbee
- We met with our advisor and discussed:
 - Base station

•

• Discussed using a Raspberry Pi vs. Microcontroller

- More research needed
- Communication protocols
 - The microcontroller's built-in long-range protocol could be best
- Discussed how to rework the circuit to determine resistance of pesticides on electrodes
 - Will use a voltage divider
 - Preliminary circuit built
- Created more concrete roles
 - Ashley, Drew, and Henry will be more on the software side
 - Yok, Hector, and Wesley more on the hardware side
- Updated task list

o Past week accomplishments

- Ashley Falcon:
 - Scheduled advisor meeting
 - Researched Hardware Abstraction Layers (HAL) and APIs
 - Determined that the ESP32-c6 consists of:
 - Low Level (LL) layer
 - Hardware Abstraction Layer
 - One that I was looking into
 - Driver layer
 - HAL refers to the operation of hardware peripherals in a series of steps
 - Register information is "hidden" or abstracted
 - Found HAL files specific to ESP32-c6
 - Looked into manuals and the manufacturer's website
 - Found .c and .h files for each peripheral
 - Touch sensor, JPEG, LCD, LEDC, etc.
 - Determined coding language to be C
 - Possible to also use C++
 - Visited ETG with Wesley Smith to determine how to order parts
 - Established meeting date with the microcontroller team
- Drew Scheidler:
 - Researched Raspberry Pi models
 - Researched various models (Raspberry Pi 1, 2, 3, 4, Zero, Compute Module, Pico.)
 - Criteria for evaluation included CPU performance, RAM options, power consumption, cost, wireless capabilities

(Wi-Fi/Bluetooth)

- Found Raspberry Pi 4 to be best fit
 - Quad-core CPU and up to 8GB RAM for high processing power
 - Dual-band Wi-Fi for strong network capabilities
 - Best option to manage ESP32 nodes and data collection
- Researched wireless communication protocols
 - Wi-Fi
- Favored for mesh network due to high data rates and ease of implementation
- Ideal for transmitting data from ESP32 nodes to the central node
- LoRa
- Long-range capability (up to 10-15 km)
- Low power consumption
- Favored for the wireless mesh network due to energy efficiency and coverage for field applications
- Bluetooth
 - Dismissed due to limited range, not feasible for larger fields

• Hector Perez Prieto:

- Looked into redesigning the schematic that the client provided
 - Includes finding new values for certain components, the addition of a new component, and removing other components
 - Client had trouble with math regarding the values of resistors, Wesley, Yok and I are going to look into this
 - Received advice from our advisor on where to start to solve this problem
- Found components and bread boards from previous classes that we can use to test our circuits
- Henry Hingst:
 - Continued looking into different wireless protocols included on the ESP32
 - ESP-Now seems to be more applicable than traditional wifi but seems to emphasize response time over range, which isn't ideal for our project
 - 802.11 LR is an ESP32 specific protocol that can support data speeds of ¼ Mbps over a range of 1km which seems perfect for

our project

- Began learning how to program the ESP32
 - We will be able to use C for our project
 - We will use Free-RTOS to compile our code and flash it onto the ESP32

• Yok Quan Ong:

- Researched the ESP32 user manual
- Looked into the GPIO
 - How many pins we are able to use
 - What is the function of each GPIO
- Looked into the Register
 - Look for each register function
- Wireless connection technologies
 - Support WiFi, Bluetooth, and ZigBee
- Circuit troubleshooting
 - Work with Wesley and hector this weekend to troubleshoot the circuit
 - Decide which part we don't need and already have it in the microcontroller

• Wesley Smith:

- Learned how to order parts with Ashley from ETG
- Successfully ordered parts
- Investigated design options for the future
 - What pieces of hardware are necessary from the schematic presented by the client
 - Some pieces of the hardware weren't needed and are built into the microcontroller
 - May have been why the client was having trouble with the circuit
- Found an improved way to measure the resistance value produced by the sensors provided by the client
 - Planning on testing the circuit in the lab Sunday with Hector and Yok
 - Made sure pieces needed for testing were in past lab kits from other EE classes
 - Made sure the advisor liked the circuit
- o Individual contributions

NAME	Individual Contributions	<u>Hours this</u>	HOURS
		<u>week</u>	<u>cumulative</u>
Ashley Falcon	Meeting Setup, HAL research, Parts	6	18
Drew Scheidler	RaspberryPi & Wireless Network Protocol	6	20
	Research		
Hector Perez Prieto	Brainstorming redesign of circuit provided to	6	18
	us by our client		
Henry Hingst	Wireless protocol & ESP32 programming	7	20
	research		
Yok Quan Ong	ESP32 User Manual/ GPIO/ Register	6	18
Wesley Smith	Ordered Parts & Circuit Designing	6	21

o <u>Plans for the upcoming week</u>

- Hardware and software teams will meet separately
 - HW meeting on Sunday
 - SW meeting on Monday
- SW team will download IDE (Eclipse? Or other) and build files
 - Will begin breaking down the SW tasks
 - Henry will primarily be on the base station while Drew and Ashley will be doing microcontrollers
 - HW team will begin building new circuit
 - Simulating Circuit
 - Drawing circuit diagram if needed
 - Testing Circuit
 - Planning implementation

o Summary of weekly advisor meeting

- Our meeting with Professor Neihart was exceedingly helpful this week
- We found guidance in establishing
 - Communication protocols and what options we should explore
 - Found the native long-range protocol on the ESP32 to be the best starting place
 - Options to be used for base station
 - Microcontroller
 - Raspberry Pi
 - C will be the language we code in
 - Feasibility of current circuit diagram
 - It will be completely reworked

- Neihart expressed that we should use the ADC internal to the microcontroller rather than an external one
- What steps do we need to take to begin downloading microcontroller files
 - Will set up on SW side before getting a physical microcontroller
 - Advised it best to get the software "working" before flashing onto physical hardware