
EE/CprE/SE 491 WEEKLY REPORT 5

10/11/2024 – 10/17/2024

Group number: sdmay25-04

Project title: Wireless Mesh Network for Pesticide Spray Monitoring and Mapping

Client: Claussen Lab- Iowa State University

Advisor: Nathan Niehart

Team Members/Role:
Software Side -

Ashley Falcon: IDEs and Microcontrollers, Group Communicator
Drew Scheidler: Mesh Networking; Note Taker
Henry Hingst: Mesh Networking; Group Leader

Hardware Side -
Hector Perez Prieto: Microcontroller; Circuit Design and Testing
Yok Quan Ong: Circuit Design and testing; Microcontroller
Wesley Smith: Circuit Design/Simulation; Microcontrollers; Note Taker

o Weekly Summary
● This week, we split into two groups to get sections of our project started

• Hardware Team
• Designed simulations and built a circuit that will output

set voltages to the microcontroller based on the
resistances provided by the Claussen Lab sensor

• Decided what components could be used based on the
requirements of the project

• Software Team
• Installed and configured the necessary software to

compile code and program it onto the ESP32 board
• Created a circuit and software to program the ESP32 to

blink an LED on and off
● We had an advisor meeting as well, where we determined the teams’ next

steps
• Recounted software and hardware teams’ progress
• Received advice on current progress



o Past week accomplishments

● Ashley Falcon:

• Collaborated with Software team to make an LED blink

• Initialized Linux terminal

• Determined which platform to use - Ubuntu

• Set up freeRTOS

• Link to Espressif’s git repository where tool paths are

stored

• Used terminal to set folder location for EE491 code

• Connected terminal to microcontroller

• Once freeRTOS was loaded in the file, I had to run commands

to install and export

• Allowed me to start a new file

• Blink LED project with main and build folder

• Used PowerShell to share and attach USB port

• Worked on blink LED code

• Used basic tasks provided in freeRTOS and while loop

• Flashed code to microcontroller

• Success!

● Drew Scheidler:

• Collaborated with the software team

• Environment setup

• Initialized the Linux terminal for development

• Selected Ubuntu as the platform for development

• FreeRTOS setup

• Installed and configured FreeRTOS

• Accessed Espressif’s Git repository to configure tool paths

• Microcontroller interaction

• Connected the terminal to the microcontroller

• Used PowerShell to share and attach the USB port

• Flashed the LED blink code to the microcontroller

• LED blink project

• Developed the blink code using basic FreeRTOS tasks and a

while loop

• Successfully verified the functionality of the blink project

● Hector Perez Prieto:

• Designed and tested a voltage divider that we built, this circuit will help

with finding the resistance that is being detected from the pesticide that



lands on our IDEs

• These tests were done with voltage sources and multimeters

from the labs

• The Hardware team was able to accurately measure voltages

that would be used to help find the data that would be shared

with the master node

• Calculated theoretical values and then tested to verify my

calculations

• Collaborated with the Hardware team which includes Wesley

Smith and Yok Quan Ong, to test and brainstorm solutions to

small issues we were running into

● Henry Hingst:

• Collaborated with Drew and Ashley to install FreeRTOS (the software

provided by the makers of the ESP32 used to program the board)

• Helped Drew and Ashley get started with the installation

• Diagnosed and fixed issues with accessing the USB port used

for flashing

• Created the software and circuit used to program an ESP32 to turn an

LED on and off repeatedly

• Created a GitHub repository to be used to store the code written by our

team

● Yok Quan Ong:

• Testing the voltage divider circuit that will be implemented in the design

• Measured the fixed value resistance so that the input voltage is

within the range that ESP32 can handle

• Simulated on LTspice and tested on a breadboard

• Measured the output voltage and the IDE (resistance voltage)

• Voltage ranges between 0.1-1.1V

• Choose the Op Amp (LMC660CM for the testing stage), which

might change to (TLV9104 on the actual design)

● Wesley Smith:

• Design and test of a voltage divider circuit that will be implemented in

our initial design

• Created and tested LTspice simulations before the hardware

group met in the lab

• Created an initial circuit to test on a breadboard

• The goal of this circuit is to send voltages ranging

from 0.1V-1.1V to the ADC based on the changing



resistance ranges of Claussen Labs' provided sensor

• Recorded data along the way

• Revised and complicated circuit to meet the needs of the

project

• Presented findings to Advisor, gained ideas for next week

o Individual contributions
NAME Individual Contributions Hours this

week

HOURS

cumulative

Ashley Falcon Linux setup, LED blink test, FreeRTOS 7 25

Drew Scheidler Set up Linux environment, completed LED blink
test, integrated FreeRTOS into project

8 28

Hector Perez Prieto Designed and tested a voltage divider circuit 8 26

Henry Hingst FreeRTOS setup, LED Blinking Project, and GitHub

Repository Creation

8 28

Yok Quan Ong Simulated and tested voltage divider 8 26

Wesley Smith Simulated and tested a functional voltage divider

circuit to provide resistances to the ADC

8 29

o Plans for the upcoming week
● Hardware

• Design wheatstone bridge circuit addition to current circuit that adds
precision to our current circuit. Goal of 0.1-1.1V output

• Create a back to back diode circuit to clamp the output voltage to not
damage the ESP if we were to unplug the Claussen Lab sensor

• Meet on Sunday to test the wheatstone bridge circuit that each
member simulated and test on breadboard.

• Fit bit solution for the range that we have tested from last week
• Find the input offset of the op amp
• Looked into the power supply, voltage regulator, and on off switch

additions to current circuit
● Software

• Follow tutorials to make several small projects to learn the basic code
functionality of the ESP32

• Begin designing the code to read the voltage of the circuit the
hardware team is designing and turn it into the sensor reading

• Begin designing the code to transmit data from one ESP32 to another
using 802.11 LR

• Create bash and .bat files to streamline the coding, compiling, and
flashing process for the ESP32



o Summary of weekly advisor meeting
● Professor Neihart provided feedback on both the hardware and software teams.

● Hardware:

• Reviewed the circuit and the data we designed and measured

• Provided feedback: wheatstone bridge for a stable voltage output

• Look for details for the input offset of op-amp and how that would affect the

output voltage

• Look up some future-use components: voltage regulator, rechargeable battery,

and on-off switch

● Software:

• Discussed success with Blink Test

• Will reach out to researchers to see how to flash microcontroller

• Our process requires repetitive steps to get it to run, such as

attaching the ports

• Assigned next steps

• Will work on communicating between microcontrollers

• Will determine how to read input voltage data from ADC and convert

it to digital data

• Will type out the steps currently being used to set up and flash

• Steps are slightly tedious and good documentation will be

essential to staying on top of the project


