EE/CprE/SE 491 WEEKLY REPORT 6

10/18/2024 - 10/24/2024

Group number: sdmay25-04

Project title: Wireless Mesh Network for Pesticide Spray Monitoring and Mapping

Client: Claussen Lab- Iowa State University

Advisor: Nathan Niehart

Team Members/Role:

Software Side -

Ashley Falcon: IDEs and Microcontrollers, Group Communicator Drew Scheidler: Mesh Networking; Note Taker Henry Hingst: Mesh Networking; Group Leader

Hardware Side -

Hector Perez Prieto: Microcontroller; Circuit Design and Testing Yok Quan Ong: Circuit Design and testing; Microcontroller Wesley Smith: Circuit Design/Simulation; Microcontrollers; Note Taker

o Weekly Summary

- Connected and tested software and hardware components with favorable readings/results
- We had an advisor meeting as well, where we determined the teams' next steps
 - Recounted software and hardware teams' progress
 - Received advice on current progress
- Hardware Team
 - Designed, tested, simulated, and integrated the Wheatstone bridge
 - Successfully communicated with the ESP32 with the circuit
 - Got a solid reading from the circuit, sent voltage values to the ESP32, and got a close reading from the measured and transferred values.
- Software Team
 - Successfully connected an ESP32 to an existing wifi network
 - Read voltage values from the ADC
 - Displayed an updated reading of voltage values from the ADC to the

monitor

Powered and ran code on the MC independent of connection to a computer

o Past week accomplishments

- Ashley Falcon:
 - Primary for writing code used to operate ADC on microcontroller
 - Initialized the ADC
 - Set up so that raw data from the ADC could be output to the terminal
 - Flashed the code to the microcontroller successfully
 - Initialized GPIO output pin
 - Set code so when below a certain threshold, the GPIO would go high and turn on an LED
 - This allowed us to determine if the code was still running independently of the computer
 - Worked with the HW team to utilize their circuit
 - Allowed us to observe the interaction between the circuit and the microcontroller code
 - Operated successfully
 - Read output in mV
 - Connected with Clients to determine how they had been flashing code in the past
- Drew Scheidler:
 - Documented steps and code to install and set up required environments and software
 - Aided with code to use ADC on MC
 - Troubleshooting errors
 - Initialization code for ADC and One Shot mode
 - Set up circuit to test ADC
 - Researched ADC physical capabilities and limits
 - Set up circuit to be powered with power supply
 - Helped setup connection between MC and hardware circuit
 - Researched setup of environment and software on Windows machines
- Hector Perez Prieto:
 - Looked into adding a Wheatstone Bridge and differential amplifier to our already-built circuit
 - Looked into the benefits that the Wheatstone Bridge introduced

- Relearned how a differential amplifier worked and applied it to our circuit
- Made changes to the previously built circuit; these changes improved the range of voltages the circuit would produce depending on the resistance value it received from our sensors
 - Tested in the Coover labs and simulated in LTSpice
 - Calculated theoretical voltage values with specific resistances that matched up with the values of voltages received in the lab
- Henry Hingst:
 - Began implementing and testing wifi connectivity on the ESP32
 - Successfully connected to a wifi network using an ESP32 and had it display information about the network to ensure the connection was successful
 - Continued looking into using 802.11 LR mode on the ESP32
 - Found that Espressif has published a GitHub repository of examples of how to create and configure the wifi connectivity on the ESP32
- Yok Quan Ong:
 - Worked on simulating and testing the sensor value using a Wheatstone bridge and op-amp
 - Integrated into the original circuit, we have
 - Simulated on LTspice and observed the output
 - tested on the actual circuit and observed the reading
 - Work with the software team to get the reading from Wheatstone bridge
 - Observed the measured range and the data received from the MCU side
- Wesley Smith:
 - Worked on simulating and testing a better way to convert sensor values to voltages using a Wheatstone bridge and differential op-amp, as recommended by our advisor.
 - Looked into how the Wheatstone Bridge works
 - Integrated it into the circuit we had
 - Simulated and adjusted the circuit resistances to output the goal voltage range
 - Tested it in the lab
 - Worked with the software team to get a feel for how the circuit will integrate with the ADC of the microcontroller

o Individual contributions

NAME	Individual Contributions	<u>Hours this</u>	<u>HOURS</u>
		<u>week</u>	<u>cumulative</u>
Ashley Falcon	ADC coding, ADC circuit simulation	7	32
Drew Scheidler	ADC testing, Environment setup, and research	7	35
Hector Perez Prieto	Made changes and corrections to the circuit, we	8	34
	had to expand our voltage ranges further		
Henry Hingst	ESP32 wifi testing and implementation	6	34
Yok Quan Ong	Circuit simulating and testing	6	32
Wesley Smith	Circuit testing and simulation, integration to ADC	7	36

o **Plans for the upcoming week**

- Hardware
 - Add a voltage regulator after the power supply to stabilize the voltage input in the Wheatstone bridge circuit
 - Change the input voltage to 5V (Boost Converter)
 - Adjust resistances of the current circuit to output the voltage range goal with changes
 - Run worst-case analysis on LTspice
 - Check the common mode rejection
 - Set up a back-to-back reverse bias after the output of the op-amp to prevent too much voltage from entering the microcontroller
 - Email client to get a concrete range of sensor value (resistance)
 - Calculate the voltage/resistance correlation s
- Software
 - Implement a wifi network between 2 ESP32s
 - Continue determining how to use 802.11LR on the ESP32
 - Calibrate ADC to output more accurate voltage readings
 - Research and document Windows environment setup

o Summary of weekly advisor meeting

- Professor Neihart provided feedback on both the hardware and software teams.
- Hardware:
 - Provided advice on how to improve our design of the Wheatstone bridge
 - Change the voltage input to 5V
 - Add a voltage regulator to the circuit
 - Balance out the Wheatstone bridge with -5V

- Run worst-case analysis on LTSpice on our circuit to verify that our circuit outputs voltages in the desired range when the input voltage is low or too much resistance is introduced
- Clarification on how to set up a back-to-back diode to make sure the ADC of our microcontroller does not receive too much or too little voltage
- Email the client and ask for the actual minimum and maximum resistance value that the sensor introduces to the circuit
- Figure out the voltage/resistance correlation of our circuit
- Software:
 - ADC Accuracy: The ADC readings are slightly off by about 10mV, but this can be offset. A 1-5% random error margin is acceptable, with a circuit output range of 0.184-1.067V.
 - Power Supply: Ensure the microcontroller's 5V supply provides enough current, and use a step-down regulator to derive 3.3V from the 5V source.
 - Sampling Rate: Determine the appropriate sampling rate and how to set it.
 - Communication Protocols: Discussed using TCP/IP or UDP for data transmission with link-level protocol, CRC for resiliency, acknowledgment mechanisms, and handling timeouts.
 - Data Packaging: Ensure data is properly arranged with metadata for sender and receiver verification, including checks for dropped bytes. Implement start/stop bits and send multiple numbers in a single package, verifying accuracy at the receiver end.
 - Unique IDs: Each system or sensor should have a unique identifier, possibly using MAC addresses or addresses created with switches.