EE/CprE/SE 491 WEEKLY REPORT 7

10/25/2024 - 10/31/2024

Group number: sdmay25-04

Project title: Wireless Mesh Network for Pesticide Spray Monitoring and Mapping

Client: Claussen Lab- Iowa State University

Advisor: Nathan Niehart

Team Members/Role:

Software Team

Ashley Falcon: IDEs and Microcontrollers, Group Communicator

• **Drew Scheidler:** Mesh Networking; Note Taker

• Henry Hingst: Mesh Networking; Group Leader

Hardware Team

Hector Perez Prieto: Microcontroller; Circuit Design and Testing

• Yok Quan Ong: Circuit Design and testing; Microcontroller

Wesley Smith: Circuit Design/Simulation; Microcontrollers; Note Taker

Weekly Summary

Hardware Team

- Detailed how our circuit works with mathematical concepts
- Researched voltage regulators and batteries to soon implement into our project
- Ran a worst case simulation (as suggested by our advisor) on our current circuit to see if it would still output the voltage ranges we wanted
- Implemented new components to LTspice and continued simulation

Software Team

- Successfully set up an tested board to board communication over wifi with two ESP32 boards
- Found and started setup and testing of a wifi mesh framework provided by Espressif
- Fixed issue with long compile times with FreeRTOS
- Explored ADC calibration function
 - Calibrated ADC for voltage readings
 - Will be used to increase accuracy of resistance values

Past week accomplishments

Ashley Falcon:

- ESP32-C6 Microcontroller ADC Calibration
 - Looked into how to calibrate the ADC to get more accurate voltage readings
 - Reviewed documentation on how the ADC works and where it might have issues
 - Looked at ways to improve accuracy, like adjusting offsets
 - Checked out best practices, such as sampling rate filters
- Researched how to set up a Windows environment to program the ESP32-C6
 - Looked into which tools and software are compatible with ESP-IDF
 - Necessary drivers and software dependencies to connect and communicate with the ESP32-C6
- Communicated with clients to confirm details and finalize choices.
 - Communication for consistency of resistor values
 - Communicated to acquire their sensors
 - Communicated to align on our process for flashing firmware

Drew Scheidler:

- Looked into how to set up ADC calibration for the ESP32-C6 microcontroller
 - Learned how the calibration process works
 - Checked out instructions on setting up and adjusting calibration
- Researched setting up the ESP32-C6 programming environment on Windows
 - Reviewed the setup process, including the tools, drivers, and software needed
 - Looked into which settings make it easier to upload and test code on the ESP32-C6
 - Looked into potential issues specific to Windows

• Hector Perez Prieto:

- Changed the source voltage of our circuit to 5V and changed some resistor values for our voltages to still fall in the desired range of 0.1 - 1.1 V.
 - Found equations that will help verify tested values
 - Further research on Wheatstone bridges and other components needed for our circuit

Henry Hingst:

- Successfully set up an tested board to board communication over standard wifi with two ESP32 boards
- Found and started setup and testing of a wifi mesh framework provided by Espressif

- The mesh network framework doesn't seem like exactly what we want but I need to test it more thoroughly to fully understand it
- Managed to set up a three node network using three ESP32s and the wifi hotspot on my phone
- This setup used standard wifi instead of the 802.11LR mode that we want to use
- Fixed issue with long compile times with FreeRTOS
 - Originally we were using a Linux distribution of FreeRTOS that ran on a Windows 11 machine using Windows Subsystem for Linux
 - I figured out that a Windows version of FreeRTOS existed and I managed to install it
 - This reduced the compile time from >15 minutes to about 1 minute

Yok Quan Ong:

- Researched on the worst case analysis on LTspice
 - Simulated on the circuit we had
 - Simulated with 1% and 5% error
 - Compared the the output of both analysis
- Researched on voltage regulator
 - How to implemented in our circuit
 - Can output both 5 and -5V

Wesley Smith:

- Researched power concepts applicable to our project
- Created a spreadsheet of different voltage regulators
 - All regulators regulate 3.7V to 5V, 5V to 3.3V, and 3.7V to -5V
 - Found a particular regulator that would work very well
- Created a spreadsheet of different batteries we could use in our project
 - Leaning towards 3.7V lithium ion rechargeable batteries
- Implemented the regulators into LTspice and saw how they interacted with our circuit

NAME	Individual Contributions	Hours this week	Cumulative Hours
Ashley Falcon	ADC Calibration Research, Client Communication	6	38
Drew Scheidler	Windows Environment Research & ADC Research	6	41

Hector Perez Prieto	Redesign of our Sensor circuit	6	40
Henry Hingst	Wifi testing and research, speeding up compiler	8	42
Yok Quan Ong	Worst case analysis, research on voltage regulator	6	38
Wesley Smith	Power analysis, Regulator Simulation	6	42

Plans for the upcoming week

• Hardware Team

- o Run power ideas by Professor Neihart
 - If approved purchase and test said components
- Look back into back to back diode circuits to implement to not fry GPIO pins
 - Need to pick diodes
 - Need to simulate
- Begin looking into how stringing multiple circuits and ESP32s will look
 - How does power need to change / does it need to change?
 - What type of error do we run into when we string them all together
 - How do we mitigate error

Software Team

- Continue testing and researching the wifi mesh framework provided by Espressif
 - Need to see if it supports 802.11LR mode
 - Need to do more testing to fully understand how it works and how to send data using it
- Further explore data packaging
 - How do frames work so that base station knows when data is faulty/not reading
 - Error messages?
- Work with the HW team to integrate IDE into our readings
 - Determine a method to convert voltage inputs to ADC to resistance values

Summary of weekly advisor meeting

- Professor Neihart couldn't make it to the meeting this week
- In his email, he mentioned that we seem to be on track and making good progress