EE/CprE/SE 491 WEEKLY REPORT 8

10/25/2024 - 10/31/2024

Group number: sdmay25-04

Project title: Wireless Mesh Network for Pesticide Spray Monitoring and Mapping

Client: Claussen Lab- Iowa State University

Advisor: Nathan Niehart

Team Members/Role:

Software Team

- Ashley Falcon: IDEs and Microcontrollers, Group Communicator
- Drew Scheidler: Mesh Networking; Note Taker
- Henry Hingst: Mesh Networking; Group Leader

Hardware Team

- Hector Perez Prieto: Microcontroller; Circuit Design and Testing
- Yok Quan Ong: Circuit Design and testing; Microcontroller
- Wesley Smith: Circuit Design/Simulation; Microcontrollers; Note Taker

Weekly Summary

- Hardware Team
 - Ran simulation on voltage regulators and voltage inverters
 - Voltage boost converter providing a step up voltage to 5V
 - Voltage inverter providing inverted voltage of -5V
 - Read datasheets and created according to circuits
 - Ensured they worked in simulation in conjunction with our circuit
 - Found necessary batteries and chargers for future circuit building
 - 3.7V sources
 - Analyzed our sensor reading circuits worst-case simulation and decided it wasn't what we wanted
 - In the past, we had thought it was a fine range of error
 - Our advisor suggested it was not; this forced us to begin re-starting our plan going forward

Software Team

- Started programming the microcontroller to output data to the SD card
 - Set up code to initialize the SD card and determine if it is ready to receive data

- Currently debugging initialization code
- Determined using SPI rather than SDIO was more efficient
 - Code is more streamlined and easier to adapt to SD card reader
- Will feed a dummy text file to the card to ensure it is collecting data
- Set up the circuit for the SD card
 - Connected wires between microcontroller outputs and SD inputs
 - Required soldering of SD card reader to pins
 - Scoured datasheet to determine which GPIO outputs should be used
 - Determined what inputs meant on SD card
 - MISO: Master-In Slave-Out
 - MOSI: Master-Out Slave-In
 - CS: Chip select
 - SCK: SPI clock
- Successfully tested and set up the wifi mesh network provided by Espressif
 - Initial setup is complete and successful
 - The nodes successfully send heartbeat messages to each other, updating the mesh network's status and structure
- Successfully tested an example provided by Espressif of board-to-board 802.11LR mode communication
 - Example is a console based control of the ESP32 board that allows the sending and receiving of wifi packets using the 802.11LR mode (also called 802.15.4 by Espressif)

Past week accomplishments

- Ashley Falcon:
 - \circ $\;$ Looked in APIs provided by Espressif to program SD card reader $\;$
 - Tried to initialize the card
 - Currently troubleshooting
 - Determined a SPI bus is far more straightforward than SDIO
 - Opened a file and wrote to it on a local device to ensure it was working
 - Scanned microcontroller datasheet
 - Found information regarding which GPIOs are most suitable for SD connections
 - Determined how to set pins
 - Collaborated with HW to determine was ratio should be used when converting from mV back to resistance
- Drew Scheidler:
 - Setup environments in Windows

- Synced working projects with Git
 - Created testing branches and component branches for code
- Experimented with SD card component
 - Setup circuit with SD card and MC and connections between the two
 - Ran tests on circuit setup
 - Looked into SD card and MC pinout
 - Looked into SD card documentation
 - Analyzed example code from Espressif and existing Arduino code
- Researched MC ADC reference voltages and attenuation

• Hector Perez Prieto:

- Researched Diodes to add to add to our circuit
 - Not yet successful but have researched and should be able to get it to function with our current circuit
- Redesigning our current circuit to avoid worst-case scenarios (voltage is too high and will most likely give us inaccurate results)
 - Worked on recalculating and simulating circuit components
- Tested resistances to get the output voltage to find a ratio that can be used by the ADC to convert voltages to resistance values

• Henry Hingst:

- Successfully tested and set up the wifi mesh network provided by Espressif
 - Initial setup is complete and successful
 - The nodes successfully send heartbeat messages to each other, updating the mesh network's status and structure
- Successfully tested an example provided by Espressif of board-to-board 802.11LR mode communication
 - Example is a console based control of the ESP32 board that allows the sending and receiving of wifi packets using the 802.11LR mode (also called 802.15.4 by Espressif)

• Yok Quan Ong:

- Run worst-case analysis
 - Changed the op-amp that is used and run again.
 - We didn't get the output we were supposed to get.
- Researched about the SD card circuit/ ESP32 circuit
 - Look into the SD card circuit and how to connect with the ESP32
 - Looked into the overall circuit between the Wheatstone bridge to ESP32 and SD card
- Wesley Smith:

- Simulated voltage regulators that I had chosen last week
 - Identified a voltage regulator that would step a 3.7V battery up to 5V for our sensor reading circuit.
 - Identified a voltage converter that will provide a -5V source for our circuit.
 - Simulated them in conjunction with our old Wheatstone bridge and made sure it all worked according to our project goals
- Found batteries and battery chargers I recommend us using
 - 3.7V sources to be stepped up to 5V

NAME	Individual Contributions	<u>Hours</u> <u>this week</u>	<u>Cumulative</u> <u>Hours</u>
Ashley Falcon	SD card initialization and programming	7	45
Drew Scheidler	SD card component and ADC research	7	48
Hector Perez Prieto	Circuit redesign and circuit calculations	7	47
Henry Hingst	Mesh wifi and 802.15.4 testing	8	50
Yok Quan Ong	Looked into the connection between SD card to ESP	6	44
Wesley Smith	Voltage regulator simulation/Battery research	6	48

Plans for the upcoming week

• Hardware Team

- Redesign the Wheatstone bridge
 - Include calculation, simulation, and worst-case analysis
 - balanced Wheatstone bridge
 - Add a potentiometer at a branch of Wheatstone Bridge to check for error
- Attenuate input voltage with 6dB
 - Increase ADC reference voltage
- \circ $\;$ Find the smallest change in resistance value we can get
- Run the worst-case simulation, and the bridge resistor doesn't have a variation or 0.01%
 - Observe the output range
- Software Team
 - Continue troubleshooting SD card initialization
 - Look into SD card documentation

- Specifically, look into Adafruit library to format SD card
- Will utilize FATFs module to create consistent file structure
 - Research application and big picture concepts
 - Use disk.io and file.h library
- Successfully write to and pull data file from the SD card
- Begin looking into ADC voltage conversions to resistance
 - Explore how we will feed ADC data to SD card and eventually other microcontrollers via mesh network
- Figure out how to send data packets over the mesh wifi network
- Set up the mesh wifi framework to use 802.15.4 instead of the standard wifi (802.11)

Summary of weekly advisor meeting

- Professor Neihart provided feedback on both the hardware and software teams.
- Hardware:
 - Redesign the Wheatstone Bridge
 - Show the calculations and simulation results
 - \circ $\,$ Connect ±5 to the top and bottom of the Wheatstone bridge
 - Balanced the Wheatstone bridge
 - Aim for the output range of 0.1V to 1V
 - Plot difference bridge resistance in MATLAB
 - Increase ADC reference voltage
 - Find the smallest change in resistance values we can detect
- Software:
 - Suggested we take advantage of Adafruit (SD card) libraries
 - Emphasized the need to understand the computer architecture big picture
 - Understand FATFs file structure
 - Initialize disk.io
 - Familiarize ourselves with using MMC/SDC
 - Rewrite the program for SD card
 - Currently, it is not working and is not coherent
 - We should utilize example code from Espressif
 - Provided resources for better understanding SD card interaction with the microcontroller itself