
EE/CprE/SE 491 WEEKLY REPORT 9

11/8/2024 – 11/14/2024

Group number: sdmay25-04

Project title: Wireless Mesh Network for Pesticide Spray Monitoring and Mapping

Client: Claussen Lab- Iowa State University

Advisor: Nathan Niehart

Team Members/Role:

Software Team

● Ashley Falcon: IDEs and Microcontrollers, Group Communicator

● Drew Scheidler:Mesh Networking; Note Taker

● Henry Hingst:Mesh Networking; Group Leader

Hardware Team

● Hector Perez Prieto:Microcontroller; Circuit Design and Testing

● Yok Quan Ong: Circuit Design and testing; Microcontroller

● Wesley Smith: Circuit Design/Simulation; Microcontrollers; Note Taker

Weekly Summary

● Hardware Team

○ Redesigned the circuit as per requested by Dr. Neihart

■ Our old design resulted in big ranges of error in voltages due to having a

huge variety of resistor values

○ Do the calculations and simulations for the new circuit

■ Have handwritten calculations that back up the design of the circuit

○ Plot the output of the simulation results

■ MATLAB script that shows relationships between voltage and resistance

○ Run the worst case simulation with Rx is fixed value

■ New circuit showed better results when running the worst case

simulations on LTSpice

● Software Team

○ Continued reading about the wifi mesh network provided by Espressif

■ Started a visualization of what the code actually does since it’s positively

gargantuan

■ Still unsure how to transmit data using the network

○ Brushed up on TCP vs UDP and how they’re implemented on the ESP32



■ We will want to use TCP since we need to guarantee the reliable transfer

of sensor data to the base station

○ Looked into an IDE created by Espressif specifically for programming the ESP32

with C

■ It is interesting and seems like it could streamline flashing code to the

ESP32, however it doesn’t currently work for us and seems like it will

need fairly extensive setup to work

○ Explored SD card documentation

■ Downloaded software in order to format SD card

● FATFs formatting for file system

■ Determined how microcontroller should connect to SD card reader

● Selected GPIO ports corresponding to SPI outputs

● Includes MISO, MOSI, Clock, and CS

● Played around with menu configurations on microcontroller

corresponding to Espressif’s example code

○ Determined that SPI frequency needs to be set relatively

low

○ Wrote dummy code to test microcontroller clock

■ Used oscilloscope to verify clock output

■ Determined via oscilloscope that data is not being output

■ Need to further explore test SD code provided by Espressif

Past week accomplishments

● Ashley Falcon:

○ Researched SD card formatting

■ Downloaded and installed SD card software in order to set the format of

the SD card

■ Ties back to FatFs documentation

○ Read into SD/MMC documentation

■ Determined what header functions in the example code were actually

doing

○ Utilized oscilloscope to verify clock signal and determine lack of data signal

○ Familiarized with the menu configurations while running Espressif example code

■ Ex. SPI speed, debugging, SD formatting, etc.

● Drew Scheidler:

○ Verified functionality of clock signal

■ Used oscilloscope to observe clock

■ Verified correct frequency



○ Researched Fat Fs documentation

■ Gained understanding of initialization process

○ Noted and researched example code dependencies

■ esp_vfs_fat.h

● Espressif FAT Filesystem Support

■ Sdmmc_cmd.h

● Espressif SD/SDIO/MMC Driver

● Hector Perez Prieto:

○ Researched balanced wheatstone bridges and the effect resistors at high and low

values had on the output voltages to then apply to our new circuit design

○ Created new circuit that had a balanced wheatstone bridge at a nominal value of

150 k ohms

■ Resulted of an output voltage roughly in the middle of our desired range

of 0.1 to 1.1 V

○ Redesigned the differential amplifier to have the same gain on both the positive

and negative inputs

● Henry Hingst:

○ Continued reading about the wifi mesh network provided by Espressif

■ Started a visualization of what the code actually does since it’s positively

gargantuan

■ Still unsure how to transmit data using the network

○ Brushed up on TCP vs UDP and how they’re implemented on the ESP32

■ We will want to use TCP since we need to guarantee the reliable transfer

of sensor data to the base station

○ Looked into an IDE created by Espressif specifically for programming the ESP32

with C

■ It is interesting and seems like it could streamline flashing code to the

ESP32, however it doesn’t currently work for us and seems like it will

need fairly extensive setup to work

● Yok Quan Ong:

○ Redesigned the wheatstone bridge circuit

○ Simulated worst case analysis and make sure the output is within the range

○ Calculate the wheatstone bridge and op amp

○ Redesigned the op amp with have the same Ri and Rf value

○ Make the output close to linear

● Wesley Smith:

○ Recreated the wheatstone bridge as per the request of our advisor

○ Centered bridge at 150k ohms, Rf and Ri values the same



○ Ran a DC sweep in increments of 10k ohms to make sure our circuit was still

outputting voltages we wanted

○ Output the data to Matlab to create a graph of this data, voltage over resistance

NAME Individual Contributions Hours
this week

Cumulative
Hours

Ashley Falcon SD card formatting, MC data transmission 8 53

Drew Scheidler SD Card Component Research, MC Lab Work 7 55

Hector Perez Prieto Circuit Calculations and Redesign 9 54

Henry Hingst Mesh Network Breakdown & Setup 6 56

Yok Quan Ong Redesign, calculate wheatstone bridge 8 52

Wesley Smith Remaking the wheatstone bridge/simulation 8 56

Plans for the upcoming week

● Hardware Team

○ Begin work to finalize circuit

■ Research why the circuit outputs data non-linearly

■ Is it fixable by addition of a component

■ How will this affect the ADC

■ Be able to explain/document why the data isn’t linear or explain the error

we would encounter if the data was linear, otherwise just have the data

linear

○ Add all the components we’ve created thus far and ensure they all work together

in simulation, wheatstone bridge, power regulator, power inverter, diode circuit

○ Make sure the diode circuit works in general

○ Get the output voltage close to linear to get ADC to give most accurate resistance

values of the sensor

● Software Team

○ Continue reading and breaking down the wifi mesh network

■ Need to understand how to transmit data packets

■ This consist of reading the API documentation provided by Espressif and

expanding the visualization of what the code is doing

○ Attempt to change the wifi mesh network to use 802.15.4 instead of 802.11

■ According to the API documentation this should be relatively simple



○ Gain better understanding of example code’s test file

■ Determine how APIs are actually being used within the example code

■ Build up slowly from the example code

○ Determine disk.io initialization

■ Where is it occurring in example code

■ How do we implement this ourselves

○ Successfully store data file from microcontroller on SD card

Summary of weekly advisor meeting

● Professor Neihart provided feedback on both the hardware and software teams.

● Hardware:

○ Change the op amp to the latest version

○ Try to fine tune the output to get more linear

○ Run the worst case again with 1% and 5%, sweep every 10k ohms

○ Plot the simulation data with the calculated version

■ Include the range of the error that shows up when the worst case

scenarios are ran

○ Figure why our graph of our simulated data not linear and find ways to fix it

● Software:

○ Reiterated goals for the week

○ Suggested better understanding header files and exploring the bones of APIs

■ Particularly for gaining a better idea of computer architecture and file

structure

○ Determine how to set up disk.io

■ This will actually establish data lines between microcontroller and SD card

○ Retry oscilloscope testing with trigger mode

■ Determined that signal/clock signals may be very quick and we might

have missed them in our initial testing

○ Continue pushing forward in SD initialization


